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Abstract
We provide a new proof, inspired by quantum field theory, of the Lagrange–
Good multivariable inversion formula.

PACS numbers: 02.10.Ox, 03.70.+k

1. Introduction and sketch of the proof

The Lagrange inversion formula [13] is one of the most useful tools in enumerative
combinatorics (see [9, 17]). Various efforts have been devoted to finding purely combinatorial
proofs and generalizations of this formula. One of the many such generalizations is the
extension from the one variable to the multivariable case. Early contributions in this direction
can be found in [4, 11, 14, 16, 18], but the credit for the discovery of the general multivariable
formula is usually attributed to the mathematical statistician I J Good [8]. We recommend [7]
for a clear and thorough presentation as well as for more complete references. Quoted from
[7] the Lagrange–Good formula says the following.

Theorem 1. Let the formal power series f1, . . . , fm in the variables x1, . . . , xm be defined by

fi = xigi(f1, . . . , fm) 1 � i � m (1)

for some formal power series gi(y1, . . . , ym). Then the coefficient of

x
n1
1

n1!
· · · xnm

m

nm!
in

x
k1
1

k1!
· · · xkm

m

km!
g

n1
1 (x1, . . . , xm) . . . gnm

m (x1, . . . , xm)

is equal to the coefficient of

x
n1
1

n1!
· · · xnm

m

nm!
in

f
k1
1

k1!
· · · f km

m

km!
× 1

det(δij − xigij (f1, . . . , fm))

0305-4470/03/369471+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK 9471

http://stacks.iop.org/ja/36/9471


9472 A Abdesselam

where

gij (y1, . . . , ym)
def= ∂gi

∂yj

(y1, . . . , ym). (2)

The odd-looking determinant in the denominator was probably one of the reasons why this
general formula was not discovered until [8]. However, a similar determinantal denominator
appeared earlier in the classical MacMahon master theorem [15]. This is no coincidence since
the latter is well known to be the linear special case of the Lagrange–Good formula. Our proof
will rely on the toy model of quantum field theory introduced in [1] and which is related to an
earlier formula of Gallavotti [6] for the Lindstedt series in KAM theory, in order to express
the compositional inverse of a power series in the multivariable setting. Our derivation of
the Lagrange–Good formula will follow from this representation of the formal inverse by
straightforward and quite natural field of theoretical computations which will, in particular,
explain the determinantal denominator as a ‘normalization factor for a probability measure’.

Now let us quickly sketch our proof from a functional (as opposed to diagrammatic) point
of view. Let φ1, . . . , φm, φ1, . . . , φm denote the components of a complex Bosonic field to be
integrated over C

m with the measure

dφ dφ
def=

m∏
i=1

(
d(Re φi) d(Im φi)

π

)
. (3)

We introduce an unnormalized correlation function∫
C

m

dφ dφ �(φ) e−φφ+φxg(φ) (4)

where φxg(φ)
def= ∑m

i=1 φixigi(φ), and � is a function of the holomorphic component φ only.

Consider the transformation V (φ)
def= φ−xg(φ) whose ith component is given by φi −xigi(φ),

and perform the change of variables φ → φ, φ → V (φ) in the integral (4). The result is∫
C

m

dφ dφJ (V −1)(φ)�(V −1(φ)) e−φφ (5)

where J is a notation for the Jacobian determinant. The last integral can be rewritten as∫
C

m

dφ dφ
�(V −1(φ))

JV (V −1(φ))
e−φφ = �(V −1(0))

JV (V −1(0))
(6)

since the Gaussian measure dφ dφ e−φφ projects a pure holomorphic integrand on its constant
term. When applied to

�(φ)
def= φ
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the previous computation gives∫
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m
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φ
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(8)

from which the statement of theorem 1 easily follows by derivation of the left-hand side with
respect to the x variables, and evaluation at x = 0.

The previous derivation could ably serve as an example illustrating the magic of symbolic
manipulations when used to prove mathematical identities [3]. However, there are obvious
problems in making the previous derivation rigorous, in a functional setting. The first one is
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that the integral (4) is not convergent. The second one is that the change of variables altered φ

but left its complex conjugate φ unchanged. These two problems could presumably be avoided,
in the case where the coefficients of the gi as well as the variables xi are real, by interpreting
φ and φ as Fourier dual instead of complex conjugate variables. One would also need to put√−1 in front of the ‘action’ φφ−φxg(φ) and to use the theory of oscillating integrals to give a
rigorous meaning to (4) (see the closely related exercise 3.2 in [10]). However one would then
obtain, at best, an analytic proof of the Lagrange–Good formula, i.e. what the original proof
using complex analysis by Good [8] already was. A recurrent theme in mathematics is trying
to find purely algebraic proofs of theorems that were first obtained through transcendental
means. Combinatorialists go even further in their requirements: they want bijective proofs,
where, for instance, an equality of generating functions is understood in terms of an explicit
correspondence between combinatorial objects counted in both sides of the equation [9, 17].
Combinatorialists sometimes have to work hard to obtain this improvement [7] over an analytic
proof [8]. In our case, and this is the main point of the present paper, no work is needed: the
translation from the functional setting to the combinatorial one is automatic and simply is the
standard perturbation expansion into Feynman diagrams that one learns among the very basics
of quantum field theory. Let us also point out that such diagrammatic techniques are not so
well known, or trusted, among mathematicians, even combinatorialists. We therefore hope
that this work will provide the latter with some incentive to learn the modicum of quantum
field theory represented by these diagrammatic techniques which account, in a large part,
for the language barrier between mathematicians and physicists. An effort in this direction is
made in [2] where we provide, using Joyal’s theory of combinatorial species [12], a framework
for the use of Feynman diagrammatic expansions as a reliable tool for proving theorems in
mathematics, even when the safety net of a functional interpretation is not available (see, for
instance, our diagrammatic proof of the Cayley–Hamilton theorem in section III.3.3 of [1]).
Last but not least, let us also add that the diagrammatic version of our proof, given in the next
section, is also rigorous. Indeed, all the diagrammatic sums we will write are easily seen to
be convergent in the ring C[[x1, . . . , xm]] of formal power series with its usual topology.

2. The proof

First, we avoid the use of multi-indices and write

gi(x1, . . . , xm) =
∑
d�0

1

d!

m∑
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w
[d]
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xα1 . . . xαd
(9)

where the tensor element w
[d]
i,α1...αd

is completely symmetric in α1, . . . , αd . Therefore the
fi(x1, . . . , xm) are the solutions of

fi = xi
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(10)

which can be rewritten as the direct reversion problem, with unknowns f1, . . . , fm,

yi = �i(f ) (11)

with yi
def= xiw

[0]
i and
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that is

�i(f ) =
∑
d�1

1

d!

m∑
α1,...,αd=1

η
[d]
i,α1...αd

fα1 . . . fαd
(13)

with

η
[1]
i,α

def= δiα − xiw
[1]
i,α for i, α ∈ {1, . . . , m} (14)

and

η
[d]
i,α1...αd

def= −xiw
[d]
i,α1...αd

(15)

for d � 2, and i, α1, . . . , αd ∈ {1, . . . , m}.
It was shown in [1] (see [2] for more detail) that the solution of such a reversion problem is

given by the perturbation expansion of the following quantum field theory one-point function

fi =
∫

dφ dφ φi e−φ�(φ)+φy∫
dφ dφ e−φ�(φ)+φy

. (16)

Here φ1, . . . , φm, φ1, . . . , φm are the components of a complex Bosonic field. The integration
is over C

m with the measure

dφ dφ
def=

m∏
i=1

(
d(Re φi) d(Im φi)

π

)
(17)

we used the notation φ�(φ)
def= ∑m

i=1 φi�i(φ1, . . . , φm), and φy
def= ∑m

i=1 φiyi . If �(φ, φ) is
a function of the fields, we use the notation

〈�(φ, φ)〉U def=
∫

dφ dφ �(φ, φ) e−φ�(φ)+φy (18)

for the corresponding unnormalized correlation function, and

〈�(φ, φ)〉N def= 1

Z
〈�(φ, φ)〉U (19)

for the corresponding normalized correlation function, where the normalization factor is

Z
def=

∫
dφ dφ e−φ�(φ)+φy. (20)

Finally we denote by 〈· · ·〉C the connected correlation functions, also known as cumulants or
semi-invariants in mathematical statistics and probability theory.

Note that the ‘action’ S(φ, φ)
def= φ�(φ) − φy in the exponential can be separated into

quadratic and nonquadratic parts by writing

�(φ) = C−1φ − H(φ) (21)

with

[C−1]ij
def= η

[1]
i,j = δij − xiw

[1]
i,j (22)

and

H(φ)
def=

∑
d�2

m∑
α1,...,αd=1

(
− 1

d!

)
η

[d]
i,α1...αd

φα1 . . . φαd
. (23)

C is the free propagator of our theory, φH(φ) is the interaction potential and φy contains the
sources which can be treated as particular vertices of the interaction. Therefore

e−S(φ,φ) = e−φC−1φ+φH(φ)+φy (24)
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and we let

dµC(φ, φ)
def= dφ dφ

det C
e−φC−1φ (25)

be the normalized complex Gaussian measure with covariance C. As a result

Z =
∫

dφ dφ e−S(φ,φ) (26)

= (det C)

∫
dµC(φ, φ) eφH(φ)+φy. (27)

Now, by the standard rules of perturbative quantum field theory,

log

(∫
dµC(φ, φ) eφH(φ)+φy

)
is the sum over the connected vacuum Feynman diagrams built using the propagators

= Cij (28)

the H-vertices

= −η
[d]
i,α1...αd

(29)

with d � 2, and the y-vertices

= yi. (30)

These diagrams are made of a single oriented loop of H-vertices linked by free propagators C,
on which tree diagrams terminating with y-vertices are hooked. Since the sum over such tree
diagrams builds the one-point function 〈φi〉N = fi = �−1(y), it is easy to see that

log

(∫
dµC(φ, φ) eφH(φ)+φy

)
=

∑
k�1

1

k
tr[C∂H(�−1(y))]

k
(31)

where ∂H(z) is the matrix with entries ∂Hi

∂zj
(z). Therefore

Z = (det C) e−tr log(I−C∂H(�−1(y))) (32)

or

Z−1 = det(C−1(I − C∂H(�−1(y)))) (33)

= det(C−1 − ∂H(�−1(y))). (34)

Now note that

∂�(φ) = C−1 − ∂H(φ) (35)

so

Z−1 = det(∂�(�−1(y))) = det(∂�(f )). (36)

Now we also have by (12)

�i(f ) = fi − (
xigi(f ) − xiw

[0]
i

)
(37)
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and thus

[∂�(f )]ij = ∂

∂fj

(
fi − xigi(f ) + xiw

[0]
i

)
(38)

= δij − xigij (f ) (39)

that is

Z = 1

det(δij − xigij (f ))
(40)

which is our interpretation of the determinantal denominator in the Lagrange–Good formula
as a normalization factor for a probability measure.

Besides, (37) can be rewritten as

�i(f ) − yi = fi − xigi(f ) (41)

that is (16) becomes

fi = 1

Z

∫
dφ dφ φi e−φφ+φxg(φ) (42)

with φxg(φ)
def= ∑m

i=1 φixigi(φ) and
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Now
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because a connected graph can hook to at most one of the sources φi . As a result
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Now it all becomes very simple since, on expanding eφxg(φ), one gets
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where dµI (φ, φ)
def= dφ dφ e−φφ , the Gaussian measure with covariance equal to the identity

matrix. Now, by integration of the φ by parts,∫
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Since �(φ) only depends on φ,
∫

dµI (φ, φ)�(φ) is equal to the constant term of �(φ) which
is easily seen to be the coefficient of
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which concludes our proof.
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Acad. Roy. Sci. Belles-Lettres Berlin 24
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